EMERALD ASH BORER INTRODUCTION, DETECTION & TREATMENT IN WY

UGA1460071

Introduction to EAB

- Adult green, ½" long
- Larva flattened, legless, bell-shaped segments
- Larval galleries winding in phloem (between inner bark & outer sapwood; girdles trees, disrupting water & nutrient transport, eventually killing trees)
- Tunnels packed w/boring dust
- Adult exit holes 1/8" diameter, D-shaped

Introduction to EAB

- NNIB native to eastern Asia (Family Buprestidae)
- Detected in North America in 2002 (southeastern MI, established since earlymid 1990s; first CO detection 2013)
- Larvae feed on ash xylem & phloem (girdles trees, disrupts water & nutrient transport, causes tree mortality)
- Estimated economic value of US ash timber loss due to EAB in next decade: \$ hundreds of millions

(ash timber important in Midwest & northeast U.S.; value of urban ash also \$ hundreds of millions)

Introduction to EAB

• Killing >99% of Midwest & northeast ash >1" dbh (all size

classes; blue ash not as susceptible but green, white, and black ash highly susceptible and comprise >99% of all ash; Asian ash species not infested & killed)

- EAB on ash different than DED on elm (mature trees AND sprouts infested)
- Spreading at 12 mi/yr (as of 2012, average short range dispersal from core infested area in

southeastern MI; excludes additional spread from inadvertent human-assisted transport)

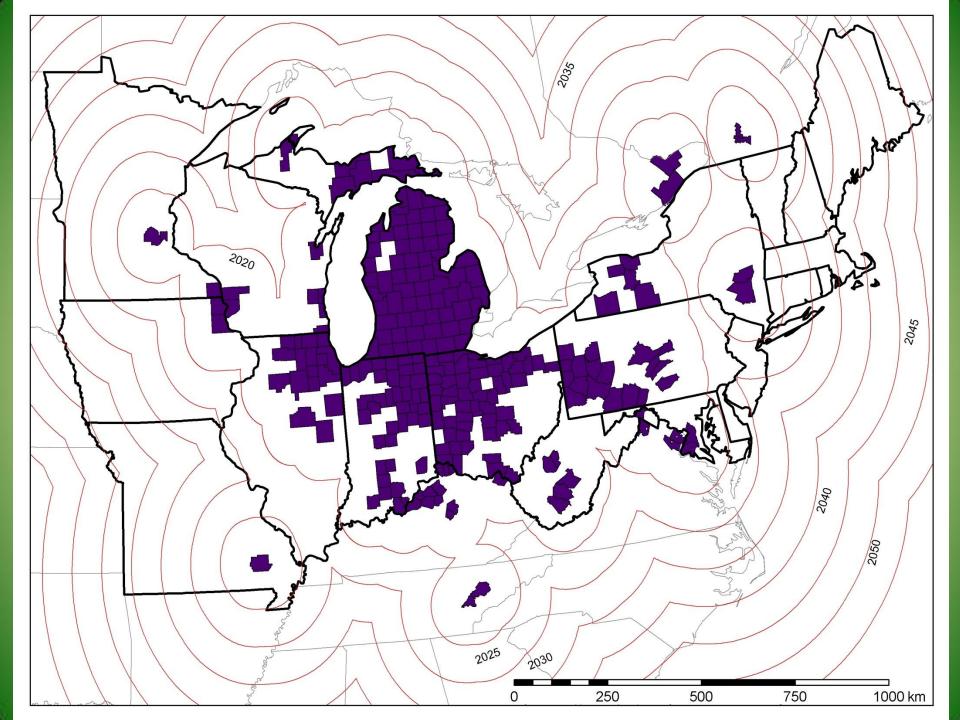
Troy Kimoto, Canadian Food Inspection Agency, Bugwood.org

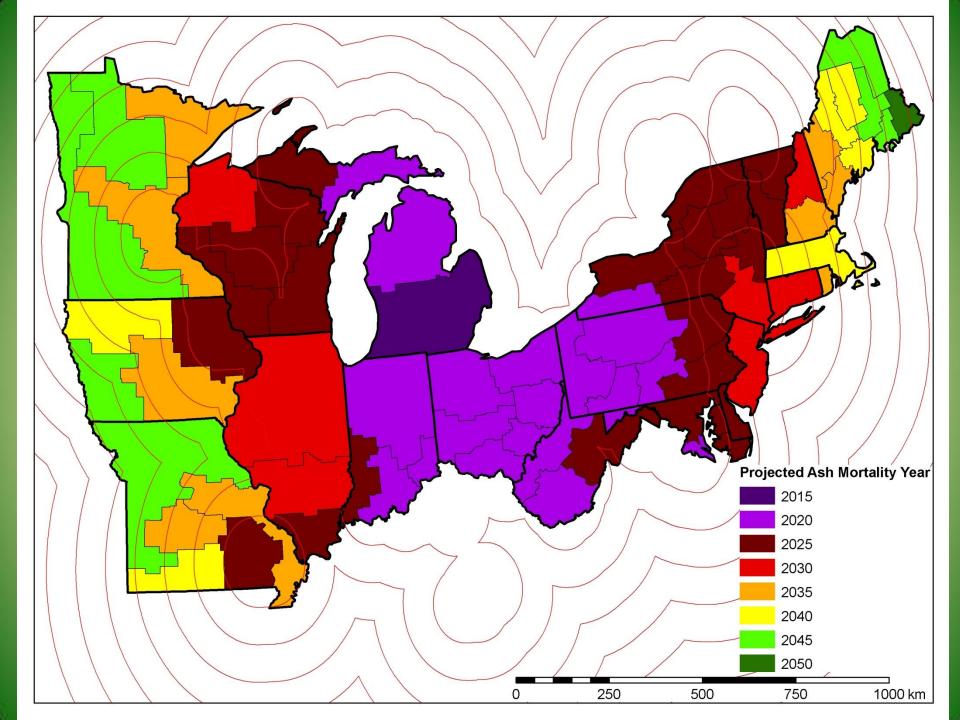
Looking for EAB

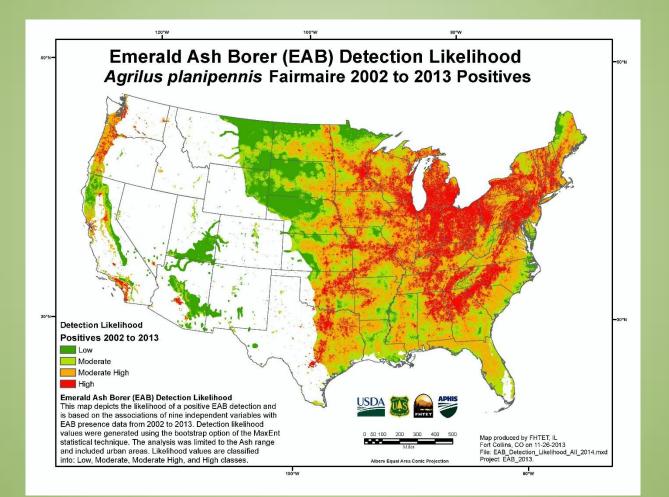
- Trapping efforts w/APHIS, others (60+ traps)
 - > Traps
 - Trap trees?
- Not yet found in WY, found across Boulder County, CO
 - Boulder, Longmont

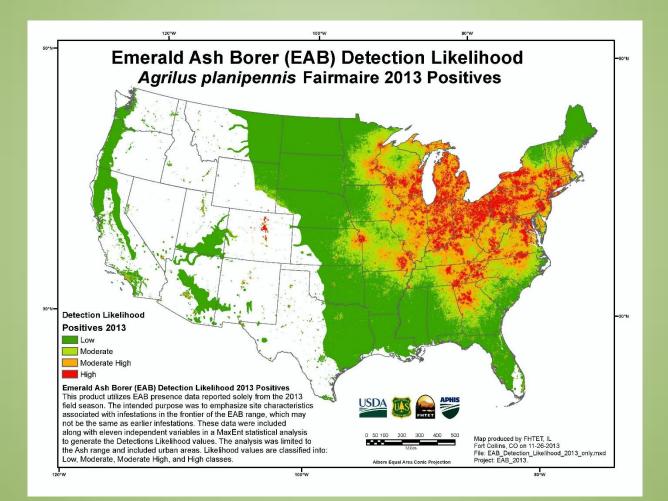
State of Wyoming Emerald Ash Borer Response Plan

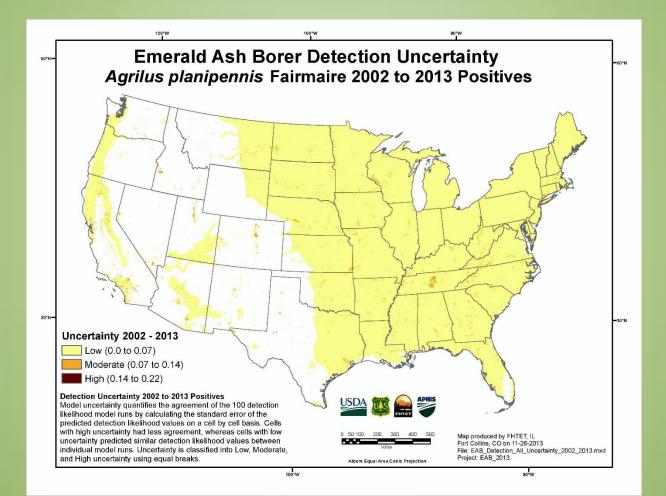
Adapted from Minnesota's Emerald Ash Borer Response Plan with input from Wyoming's stakeholders and partners, including: Wyoming State Forestry Division, Wyoming Department of Agrikulture, USDA-APHIS PPQ, and U.S. Forest Service Forest Health Protection flockly Mountain Region

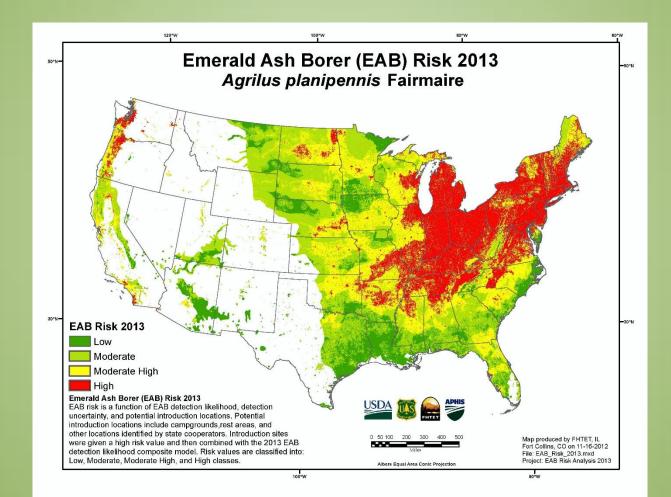

April 17, 2017

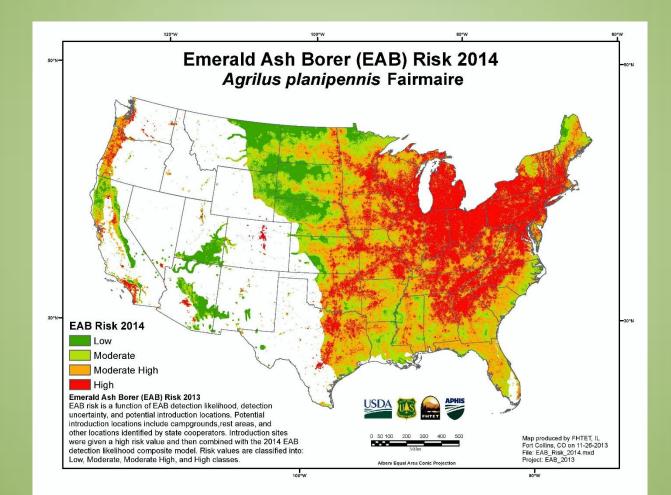


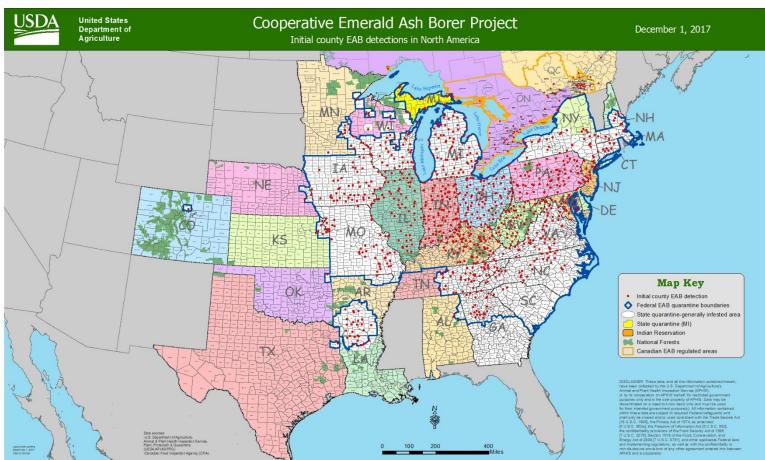


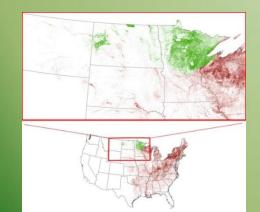


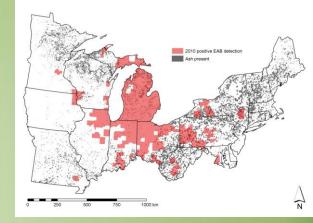






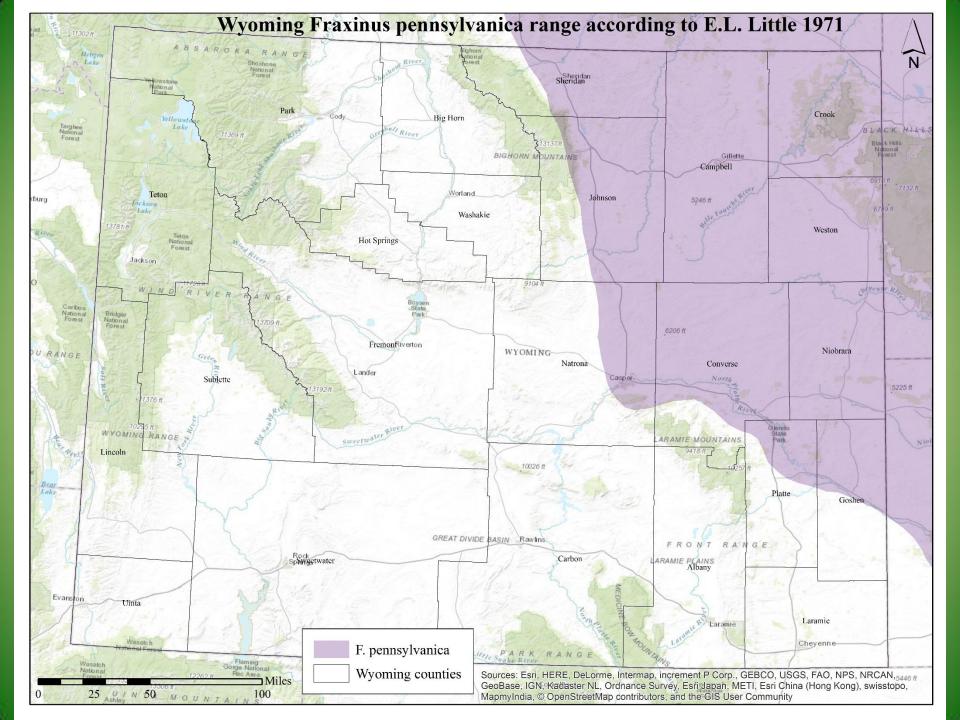






Where is the ash?

Current WY ash resource


- Rural?
 - Native = mostly riparian green ash in NE WY
 - FIA: 2,075,272 trees, all on private land
- Urban?
 - Ash % tree canopy varies
 from low % (Laramie) to
 High % (Powell)
- Native: green ash

WY Green Ash DBH Distribution

EAB monitoring

Monitoring efforts (traps, trap trees) focused on

- 1. High% urban ash
- 2. Larger human population
- 3. Transportation corridors
- 4. Recreation/camping nearby
- 5. Within ash native range

PROTECT OUR FORESTS

TRANSPORTING FIREWOOD SPREADS TREE-KILLING INSECTS. BUY IT WHERE YOU BURN IT.

From Wyoming State Forestry Division and Don't Move Firewood.

Location	green ash range	urban ash%
Powell		41
Riverton		28
Cody		22
Douglas	X	21
Worland		18
Cheyenne	X	15
Rock Springs		15
Casper	X	14
Lander		14
Rawlins		12
Sheridan	X	10
Gillette	X	7
Buffalo	X	6
Pine Bluffs	X	4
Evanston		4
Newcastle	X	3
Laramie		3
Jackson		3

Infestation symptoms of EAB on ash

Midwest/northeast U.S.

- Dieback (many other causes not EAB-related... ash yellows, drought, soil compaction & root injury, ash/lilac borer, other ash borers & bark beetles)
- Suckering & epicormic branching (could be caused by some of the above, e.g. ash yellows)
- Bark splits (could be caused by fungi e.g. Cytospora)
- Woodpecker damage (could be searching for other insects)
- D-shaped exit holes (could be mistaken for other insects)

Infestation symptoms of EAB on ash

Colorado

- Usually no suckering
- Little epicormic branching, especially lower on bole
- Ash health/growth rates (<CO vs >Midwest)
 - Lilac/ash borer, banded ash borer, redheaded ash borer
 - Ash bark beetles
 - Cytospora canker
 - Drought
 - Spring freezes
 - Dry summers
- Increased ash mortality/decline not EAB-related
 - Cold-killed cambium & drought, trees dying & falling down
 - Ash limbs breaking clean, not tearing (drought-related?)

Emerald Ash Borer

in Twin Cities

What to Look For:

Infestation symptoms of EAB on ash

Potential local symptoms

- Crown thinning, early Fall color, mid-crown sprouting, dieback
- Bark splits & galleries, D-shaped exit holes, larvae (Fall to Spring), adults (Summer)
- Detection difficult because many ash are already in poor health
- KS: Look on S side of tree, underside of branch @width of forearm, @eye level, if bark looks different consider peeling to look for EAB

Treatment options

- When to treat ash trees (<15mi; >50% canopy intact)
- When to remove ash trees (well ahead of infestation front timed replacement; low-value trees within quarantine zone)
- Small-scale: private landowners can protect individual trees with a variety of chemicals (imidacloprid (Imicide, Xytect), dinotefuran (Safari), azadirachtin (TreeAzin), emamectin benzoate (ArborMectin, Boxer, TREE-age), permethrin, bifenthrin, cyfluthrin, carbaryl)
- Soil injection, trunk injection, trunk/branch spray
- Systemic insecticides: tree must be healthy enough to transport chemicals up the trunk and into branches/canopy!

Treatment options

- 1. Systemic insecticides applied as soil injections/drenches
- 2. Systemic insecticides applied as trunk injections
- 3. Systemic insecticides applied as lower trunk sprays
- 4. Protective cover sprays applied to trunk, main branches

Treatment options: Systemic insecticides applied as soil injections/drenches

- Imidacloprid, dinotefuran
- Taken up by roots, translocates throughout

- Injection can distribute product closer to root zone than drench (<u>less slope runoff</u>)
- Must be done when soil is moist, not saturated
- Should not be done-
 - to soils that are sandy, low OM, prone to leaching
 - with shallow water table
 - when there is risk of contaminating nearby water
 - When root systems of nearby plants visited by pollinators will be affected (plants around base of tree)
- Inconsistent results
 - May be more effective with small trees
 - Most effective when done at base of trunk

Treatment options: Systemic insecticides applied as trunk injections

- Emamectin benzoate (low rates can provide control for 2+ years), azadirachtin (effective up to 2 years but must be applied more often when EAB density is high), imidacloprid (inconsistent results)
- Can be used where soil injections are not possible
- Injected by drilling into bark & outer sapwood <u>(could</u>
 <u>cause tree damage</u>)
- High-pressure needle injections can cause bark separation
- Products transported & absorbed quicker than by soil injection
- Most effective when soil is moist, not saturated

Treatment options: Systemic insecticides applied as lower trunk sprays

Dinotefuran

- <u>Neonicotinoid</u> (like imidacloprid, but more water-soluble & moves better throughout plants)
- Sprayed on lower 5-6' of trunk
- Penetrates bark, transported throughout tree
- Quick, easy application requiring only low-pressure common garden sprayer

If done properly, should not wound tree or penetrate soil

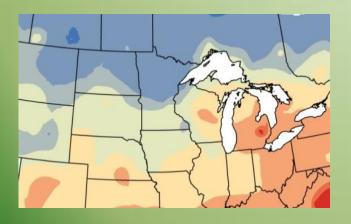
- Dinotefuran spray = similar effectiveness to soil-applied dinotefuran or imidacloprid
- Translocates to canopy at similar rates of trunk-injections and faster than soil-applied products
- Effectiveness variable, must be applied annually

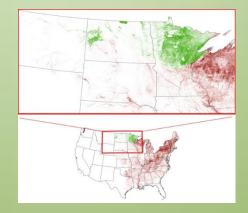
Treatment options: Protective cover sprays applied to trunk, main branches

- Permethrin, bifenthrin, cyfluthrin, carbaryl
- Can be sprayed on trunk, branches and possibly foliage
- Kills adults feeding on foliage and newly hatched larvae chewing through bark
- No effect on larvae feeding under bark
- Complete coverage necessary for best results
- Variable results based on product used (Onyx, Tempo, Sevin SL may provide good EAB control)
- <u>Spraying large trees can result in substantial insecticide</u> <u>drift</u>

Treatment options summary

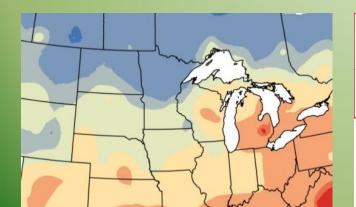
- Emamectin benzoate (ArborMectin, Boxer, TREE-age; trunk injection) consistently effective regardless of tree size, 2+ years EAB control
- Azadirachtin (TreeAzin; trunk injection) may provide protection for 1-2 years depending on EAB population
- Dinotefuran (Safari; lower trunk spray) effective for 1 year on smaller trees
- Imidacloprid (Imicide, Xytect), dinotefuran (soil injection) effective for 1 year on smaller trees regardless of EAB population, most effective when applied at base of trunk and soil is moist but not saturated; <u>as neonicotinoids,</u> <u>could be harmful to pollinators</u>

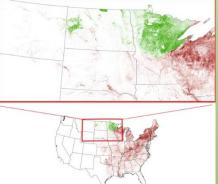



Can climate limit EAB spread?

- EAB overwintering:
 - Larvae or prepupae

- ½" beneath bark surface, anywhere on tree, including at base of tree bole near ground level
- Lowest recorded EAB supercooling point = -31.54°F
- At least half of the EAB population may not survive -22°F





Can climate limit EAB spread?

- No evidence that North American climate can 100% limit EAB survival
- Possible climatic constraints to EAB infestation in north-central US, south-central Canada
- EAB at low populations that do not infest trees usually do not cause ash mortality (Ash may persist in MN, ND, MT but not farther S)

Can climate limit EAB spread?

- In northern ranges of ash, EAB may not kill much ash and EAB spread may take some time:
 - Resource limitations on EAB spread
 - Climatic constraints to EAB spread
- In WY, not much chance for climatic constraints to EAB spread; possibility for resource limitations on EAB spread?
 - Gypsy moth:
 - Found in Lovell 2015, no spread
 - Found in Casper 2016, no spread

• <u>Biggest threat is transporting firewood!</u>

Stop the Emerald Ash Borer Don't Move Firewood > StopTheBeetle.info

QUESTIONS?

http://emeraldashborer.info/

http://www.emeraldashborer.info/documents/Multistate EAB Insecticide Fact Sheet.pdf

https://nfs.unl.edu/documents/EAB/EABTmtOptionsFH13-2012.pdf

https://sites.google.com/a/wyo.gov/forestry/forest-management/forest-health/forest-health-management